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Abstract

In Part I macroscopic field equations of mass, linear and angular mo-
mentum, energy, and the quasistatic form of Maxwell’s equations for a
multiphase, multicomponent medium were derived. Here we exploit the
entropy inequality to obtain restrictions on constitutive relations at the
macroscale for a 2-phase, multiple-constituent, polarizable mixture of flu-
ids and solids. Specific emphasis is placed on charged porous media in the
presence of electrolytes. The governing equations for the stress tensors of
each phase, flow of the fluid through a deforming medium, and diffusion of
constituents through such a medium are derived. The results have appli-
cations in swelling clays (smectites), biopolymers, biological membranes,
pulsed electrophoresis, chromotography, drug delivery, and other swelling
systems.

Key words: porous media, mixture theory, electrodynamics, swelling, consti-
tutive equations

1 Introduction

We continue our investigation into the form of the governing equations for a
multiple-component, multiple-phase, polarizable, swelling porous medium with
charged particles subject to an electric field. In Part I of this series we de-
rived the macroscopic field equations in which it is the total electric field which
affects the species’ conservation of momentum and energy. In this paper, we
exploit the entropy inequality in the sense of Coleman and Noll [14] in order
to obtain restrictions on constitutive equations in terms of macroscopic vari-
ables. This approach differs from classical averaging [29, 30, 31, 35, 36] or
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homogenization [10, 16, 32] where both the field equations and microscopic
constitutive equations are upscaled to obtain macroscale equations in terms of
microscale geometry and microscale constitutive coefficients. The advantage of
homogenization and averaging is that if one knows the microscale constitutive
equations and geometry, then one can obtain to first-order (and second-order...)
constitutive equations (including the coefficients) at the macroscale in terms
of microscopic variables. The HMT approach assumes only the variables upon
which constitutive variables may depend, and produces restrictions of the form
of constitutive equations in terms of macroscopic variables. HMT does not as-
sume any microscale constitutive relations nor any specific microscale geometry,
which in such complex media as considered here are not satisfactorily known.
This point is of significant import for natural media such as geophysical environs
or polymeric systems, which are never well-characterized geometrically at the
microscale.

For simplicity we consider only a liquid-solid system. The mixture is charge
neutral, although neither the phases nor species face this requirement individ-
ually. We assume that interfacial properties such as excess mass density, free
charge on interfaces, and interface currents are negligible; although the present
theory can be extended to explicitly incorporate these effects [19]. However, it
should be noted that for many practical materials where the ratio of surface
area to volume of the solid phase remains constant, interfacial characteristics
can be accounted for in this theory. This is because in the case where surface
to volume ratio is constant, charge per unit mass of the solid phase is directly
proportional to charge per unit surface area. Likewise the theory presented here
also applies to materials in which the charge of the solid itself changes. This
theory would not apply to materials in which the charge of the solid phase and
of the interface vary independently. So, for example, the theory applies to clay
minerals, which has a charge associated only with its surface, and to polymers
which has a charge associated with the polymer but not with its surface if a
surface can be defined.

In deriving restrictions on the form of the constitutive equations, we follow
[17, 18] and view fluxes as constitutive. In earlier work, Eringen [18] considered
constituent electric fields throughout for a non-swelling porous medium; Huyghe
and Janssen [23] considered a single electric field in a deformable two-phase
porous medium with no exchange terms in the conservation equations; and Gu
et al. [20] considered a charged swelling medium with no electric field.

2 Constitutive Assumptions and the Entropy In-
equality

The full entropy inequality which is exploited in subsequent sections is present-
ed in Appendix B. The basic notation is found in Part I so only new terms are
defined herein. We assume the medium consists of a liquid phase (denoted by
α = l), and a solid phase, (denoted by α = s), and that the medium is macro-
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scopically neutrally charged, however charges may move between constituents
and phases.

We assume that entropy generation must be non-negative for the total body,
i.e.

ρΛ̂ =
∑
α

∑
j

εαραj Λ̂αj ≥ 0. (1)

Further we assume a form of local equilibrium wherein there is one temperature
for all constituents and all phases, i.e. Tαj (x, t) = T (x, t) for all constituents j
and all phases α. This effectively states that the rate of heat transfer between
constituents is much faster than the time scales of interest to the problem.

To couple the entropy and energy equations, it is necessary to relate the
fluxes and sources of entropy to the fluxes and sources of heat. We assume the
processes are simple in the sense of [17]. In this sense several possible relations
are admissable. Among these are:

φαj =
qαj

T
bαj =

hαj

T
(2)

φα =
qα

T
bα =

hα

T
(3)∑

α

εαφα =
∑
α

εαqα

T

∑
α

εαbα =
∑
α

εαhα

T
. (4)

The expressions in (4) have been used in [18], and the relations in (2) have
been used in [1, 2, 4, 22]. More general expressions which simplify to the above
are used in extended thermodynamics [24, 26]. The question is whether the
processes governing the behavior of the constituents themselves, the individual
phases, or the bulk material are simple. The assumption of any one of these
does not imply any other due to microscale/macroscale relationships between
heat fluxes and heat sources [5]. This problem is complicated further because
the macroscale definition of the heat flux depends on how one incorporates
microscale fluctuations (see Part I, [5]). The differences manifest themselves ex-
plicitly in the constitutive relations obtained for diffusive fluxes and the chemical
potential. For example, if the relations in (4) are used then it can be shown
that the chemical potentials of two “different” species at equilibrium must be
equal, which is inconsistent with Gibbsian thermostatics [13]. To the authors’
knowledge, the relations in (2) do not result in any physical inconsistencies in
near-equilibrium processes, and these are the relations used herein.

Define the Helmholtz free energy for the species and the internal Helmholtz
free energy for the bulk phase as

Aαj = eαj − Tηαj Aα =
N∑
j=1

CαjAαj (5)
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and introduce a modified Helmholtz free energy as

Ã
αj

= eαj − Tηαj − 1
ραj

ET · P αj Ã
α

=
N∑
j=1

Cαj Ã
αj
, (6)

where Cαj is the mass fraction of constituent j in phase α given by Cαj =
ραj/ρα. The purpose of introducing the modified Helmholtz potential is to
reduce the amount of manipulations required to obtain the entropy inequality,
as either P αj or ET must be constitutive (dependent) variables. With this
notation, eliminating φαj , bαj , Q̂αjβ , Q̂αj , Φ̂

αj

β , and η̂αj from the entropy balance
and re-writing it in terms of bulk-phase variables one obtains

∑
α

εαραT Λ̂α = −
∑
α

εαρα
(DαÃ

α

Dt
+ ηα

DαT

Dt

)
+
∑
α

εαJ α ·ET

+
∑
α

[
εαtα + εαP α ·ET I +

N∑
j=1

εαραj
(
Ã
αj
I + vαj ,αvαj ,α

) ]
:∇vα

+
∑
α

N∑
j=1

[
εαtαj + εαP αj ·ET I

]
:∇vαj ,α

+
∑
α

ε̇α
[1
2
εoET ·Eα +ET · P α + ραAα

]
+
∑
α

εα

T
∇T ·

{
qα +

N∑
j=1

[
ραjvαj ,α(Ã

αj
+

1
2
vαj ,α · vαj ,α)− tαj · vαj ,α

]}

+
∑
α

N∑
j=1

εα
Dsραj

Dt

[ 1
ραj

ET · P αj +Aαj
]
−
∑
α

εαĖT · P αj

+vl,s ·
[
− εlρlT̂

l

s +
N∑
j=1

(
Alj∇(εlρlj ) +

1
ρlj
ET · P lj∇(εlρlj )

−εl∇ET · P lj +
1
2
εoET ·Elj∇εl

)]
+
∑
α

N∑
j=1

vαj ,α ·
[
− εαραj (̂i

αj
+
∑
β 6=α

T̂
αj

β )− εαραj∇Ã
αj − εαqαje ET

+
1
ραj

ET ·P αj∇(εαραj )− εα∇ET ·P αj +
1
2
εoET ·Eαj∇εα

]
−
∑
α

N∑
j=1

∑
β 6=α

εαραj ê
αj
β

[ 1
ραj

ET · P αj + Ã
αj

+ Ã
α

+
1
2

(vα,s)2 +
1
2

(vαj ,α)2
]

+
∑
α

N∑
j=1

εαραj r̂αj
[
− 1

2
(vαj ,α)2 − Ã

αj − 1
ραj

ET · P αj
]
≥ 0, (7)
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where a comma in the superscript denotes difference (e.g. vα,s = vα − vs), a
superimposed dot denotes the material time derivative with respect to the solid
phase (e.g. ε̇α = ∂εα/∂t+vs ·∇εα), I is the identity matrix, and the contraction
operator A : B is, in indicial notation, AijBij .

We enforce many of the balance laws weakly using the Lagrange Multiplier
approach [25]. The equations and their associated Lagrange multipliers are
listed below.

Lagrange Equation from [5] Lagrange Equation from [5]
Mult. Mult.
λ
αj
ρ Continuity Eqn αj , (42) λ

αj
D Gauss’ Law (49)

Λαj
E Faraday’s Law (55) λ

αj
qe Conserv. of Charge (70)

Λ Ds

Dt (ε
lqle + εsqse) = 0

Ampère’s law is derivable from the conservation of charge and Gauss’ law and
so is not enforced directly. The expression corresponding to the Lagrange multi-
plier Λ enforces charge neutrality locally. This restriction alone implies that the
total charge could vary in space. However we have in mind that the mixture is
charge neutral initially everywhere so that it is assumed the time scale at which
imbalances may occur is small compared to the time scale involved with other
processes.

The unknowns in this system include:

εl, ραj , vαj , T, Eαj , qαje , (8)

ê
αj
β , r̂

αj , tαj , tα, T̂
αj

β , T̂
α

β , î
αj
, (9)

Aαj , qαj , ηαj , (10)

P αj , d̂
αj
, d̂

αj

β , σ̂
αj , σ̂

αj
β , J

αj , q̂αj , Ẑ
αj

β . (11)

The variables in the first row, (8), are the primary unknowns. The remaining
variables, (9–11), are considered constitutive and are a function of constitutive
independent variables. In order to close the system, one additional equation is
needed, which corresponds to the unknown εl. This is known as the closure
problem, and it arises from the homogenization of the microscopic geometry.
To close the system we follow [1, 9, 12] and view the time rate of change of the
volume fraction Dεl/Dt as a constitutive variable.

The choice of constitutive independent variables is made based on knowl-
edge of the system being modeled. Here we assume the fluid may behave as
a Newtonian fluid and the solid as an elastic solid, hence we include the rate
of deformation tensor, dl, and the strain tensor, Es. Since the solid phase
may be disconnected, the macroscale strain tensor is not the average of the mi-
croscale strain, but is defined in terms of the deformation gradient F = ∇ox,
Es = 1

2 (F Ts F s−I), where∇o denotes differentiation with respect to the macro-
scopic material particle. Thus the strain tensor is a measure of the geometry of
the solid phase. Further, we are particularly interested in modeling materials
in which the solid and fluid phases have electro-chemical interactions, so that
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the behavior of the liquid phase may strongly depend upon its proximity to the
solid phase. Thus we incorporate the volume fraction, εl, as an independent
variable. The independent variables which are used to define the constitutive
variables include:

εl, T, ραj , vl,s, vαj ,α, Es, ET , z
αj ,

∇εl, ∇T, ∇ραj , dl, ωα, ∇vlj ,l, ∇Es, ∇ET ,

j = 1, ..., N, α = l, s (12)

where because the liquid phase may be polarizable and may depend strongly on
the geometry of the solid phase [5], we have also included the vorticity tensor,
ωl = (∇v − (∇v)T ). Note that we have incorporated the total electric field
as an independent variable, as opposed to the electric fields of each constituent
or each phase. This is because it is assumed that all constitutive variables are
measured with respect to the total electric field.

The charge of a species, zαj , has units of charge of αj per unit mass of
αj . This results in terms such as ∂Aα

∂zαj
which is evaluated holding all other

independent variables in (12), such as volume fraction and densities, fixed. This
allows for disassociation of ions, or changes in the charge density of the solid
phase, either through the change in surface charge density or through charge
density of the bulk phase, but not both (see the introduction).

To simplify the results we relax the Principle of Equipresence [34] and assume
that the modified Helmholtz potential energies Ã

α
are a function of a subset of

the above constitutive independent variables:

Ã
l

= Ã
l(
εl, T, ρlj , vl,s, vlj ,l, Es, ET , z

lj ,

∇T, ∇ρlj , dl, ωl, ∇vlj ,l
)

(13)

Ã
s

= Ã
s(
εl, T, ρsj , vsj ,s, Es, ET , z

sj ,

∇T, ∇ρsj , ωs
)
. (14)

We note that including the additional independent variables does not change
the results if one modifies the definitions of pressure, chemical potential, etc.
see e.g. [4]. The entropy inequality is now expanded in the traditional manner
[9, 17, 21] and is presented in Appendix B.

3 Non-Equilibrium Constitutive Restrictions

The following variables are neither constitutive nor independent,

Dsραj

Dt
,
Dszαj

Dt
, Ṫ , ĖT , d

s, ∇vsj ,s, ∇Ṫ , (15)

v̇αj ,α, ∇
(
Dsραj

Dt

)
, v̇l,s, ḋ

l
, ω̇l, ∇v̇lj ,l, (16)

∇×Eαj , ∇ ·Eαj , (17)
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where j = 1, ..., N for all variables not containing vαj ,α, since
∑N
j=1 ρ

αjvαj ,α =
0. Thus for example, vsj ,s is indexed from j = 1, ...N − 1 in order to keep
the list of variables functionally independent. Since these terms appear linearly
in the entropy inequality, their coefficients must be zero. This results in the
following restrictions (corresponding directly with the terms in (15)):

λαjρ = ρα
∂Ã

α

∂ραj
− Ã

αj − 1
ραj

ET · P αj − zαjΛ, j = 1, ..., N (18)

λαjqe + Λ =
ρα

ραj
∂Ã

α

∂zαj
(19)

∑
α=l,s

εαρα(ηα +
∂Ã

α

∂T
) = 0 (20)

∑
α

εαP α = −
∑
α

εαρα
∂Ã

α

∂ET
(21)

εstssym = −
N∑
j=1

εsρsj (λsjρ + Ã
sj

) + εstse + εltls − εsP
s ·ET I

−
N∑
j=1

εsρsjvsj ,svsj ,s (22)

tsj − ρsj

ρsN
tsN = −(P sj ·ET −

ρsj

ρsN
P sN ·ET )I − ρsj (λsjρ − λsNρ )I (23)

εlρl
∂Ã

l

∂∇T + εsρs
∂Ã

s

∂∇T = 0, (24)

where we have defined the effective stress tensor and hydration stress tensor as

tse = ρs∇F s · ∂Ã
s

∂Es · (∇F
s)T tls = ρl∇F s · ∂Ã

l

∂Es · (∇F
s)T , (25)

respectively. The restrictions obtained from the coefficients of the variables list-
ed in (16) indicate that the modified Helmholtz free energies are not a function
of vαj ,α, ∇ραj , vl,s, dl, ωα, ∇vlj ,l, and the restrictions corresponding to the
variables listed in (17) require that the Lagrange multipliers, λαjqe , ΛαjE , and λαjD
must all be identically zero.

Equations (18) and (19) define the Lagrange multipliers λαjρ and λαjqe , respec-
tively. Equation (20) states that ηα and T are dual variables with respect to the
modified Helmholtz potential, and this is in agreement with [2, 18]. Equation
(24) states that the modified Helmholtz potential of the entire system is inde-
pendent of ∇T .

The definitions of the effective stress tensor indicates that the effective stress
tensor measures a change in energy of the solid phase with respect to the strain
in the solid phase. The strain in the solid phase is purely a geometrical quantity
(intuitively, one takes the solid phase, smears it out to obtain a continuous
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medium at the macroscale, and measures its deformation - see the definition
of E following (11)). If the solid phase is connected, the strain represents an
average of the microscale strain, and the effective stress tensor is non-negligible
if strain occurs. For a disconnected solid phase, the energy of the solid phase is
negligible for large movements of particles, and hence the effective stress tensor
is negligible. However in the case where the medium swells (high interaction
between liquid and solid phase), and where the solid phase is disconnected, the
hydration stress tensor measures the stress the liquid phase supports when the
solid phase is sheared. This can occur at low moisture content, see, e.g. [15], so
that in this case although the effective stress tensor is negligible, the hydration
stress tensor is not. Most swelling porous media have a structure such that
both the solid and liquid phase can support shear, in which case neither the
hydration nor the effective stress tensors can be neglected. See [8] for a more
detailed discussion on this topic.

Equation (21) implies that it is the polarization of the entire medium which
is dual to the electric field in this representation. This is in contrast with [18]
in which it is shown that the polarization of each component is dual to the
constituent’s electric field. The disparity results from our choice of independent
variables - we use ET and Eringen uses Eαj as independent variables.

We define the pressure thermodynamically by

pα =
N∑
j=1

ραj (λαjρ + Ã
αj

) + P α ·ET + qαe Λ (26)

=
N∑
j=1

(
ραραj

∂Ã
α

∂ραj

)
(27)

To see how this variable corresponds to what is classically thought of as pressure,
we re-write (22), the expression for the symmetric part of the solid-phase stress
tensor, as

tssym = −(ps − qseΛ)I + tse +
εl

εs
tls −

N∑
j=1

ρsjvsj ,svsj ,s (28)

so that by comparison [17], we see that ps−qseΛ represents what is traditionally
thought of as pressure.

Charges and the electric field enter into this expression through the term
containing the Lagrange multiplier enforcing charge neutrality, qseΛ, and through
the definition of Ã

α
in the remaining terms. The role played by the effective

and hydration stress tensors are discussed in [7, 8, 27, 28]. We remark that if
the solid phase is considered incompressible then the material time derivative
of ρsj is zero, ρsj is not considered an independent variable, and λ

sj
ρ is the

Lagrange multiplier which enforces the remaining part of the conservation of
mass for constituent sj . In that case we obtain the same results, except that ps

is a primary unknown which must be solved for directly.
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We define the chemical potential as the change of the total Helmholtz poten-
tial with respect to the mass of species j (keeping the total volume fixed) [13].
Intuitively it is the scalar quantity representing the chemical energy required
to insert that species into the mixture. Formally dividing this thermodynamic
definition by the volume of the REV, we have

µαj =
∂(εαραÃ

α
)

∂(εαραj )
= Ã

α
+ ρα

∂Ã
α

∂ραj

∣∣∣∣∣
εα

. (29)

The electro-chemical potential, incorporates the chemical and electrical energy
required to insert the particular species into the mixture. In this formulation
this is:

µ̃αj = µαj + zαj
(

Λ− ρα

ραj
∂Ã

α

∂zαj

∣∣∣∣∣
εα,ραj ,...

)
. (30)

The additional terms are generically termed the electrical potential, and classi-
cally they are written as z̃αjeψ where z̃αj is the charge number of αj , e is the
charge on an electron, and ψ is the electrical potential. The Lagrange multipli-
er, Λ, has units of energy/charge, and is sometimes referred to as the streaming
potential [33]. The first part of the electrical potential has been derived before
[23, 20], and is the energy associated with inserting a charged ion into a system
when the system wants to remain charge neutral. The second term is novel, and
represents the energy of changing the charge of a particular species if, for exam-
ple, an electron were added to a molecule. Interchanging between the different
independent variables zαj and z̃αj , requires the molar weight, Mαj [mass αj

per mole αj ], and Faraday’s constant, Fc (96, 000 C/mole): ∂Ã
α

∂zαj
= Mαj

Fc
∂Ã

α

∂z̃αj
.

With (29) as the definition of the chemical potential and by using (23) we
can determine the relationship between the chemical potential and the partial
stress tensors. By eliminating the Lagrange multipliers and using the definition
of µsj , (23) becomes

tsj − ρsj

ρsN
tsN =

[
− ρsj (µsj − µsN ) + ρsj (Ã

sj − Ã
sN

)

+ρsj (zsj − zsN )Λ
]
I. (31)

Summing these equation on j from 1 to N and using

N∑
j=1

ρsjµsj = ρsÃ
s

+ ps

(32)
N∑
j=1

tsj = −(ps − qseΛ)I + tse +
εl

εs
tls + tsas, (33)
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where as indicates the anti-symmetric portion of the stress tensor, tsas = ts −
tssym, one obtains an expression for µsN , which when substituted back into e-
quation (31) yields

µsjI = Ã
sj
I − 1

ρsj
tsj +

1
ρs

(
tse +

εl

εs
tls + tsas

)
+ zsjΛ j = 1, ..., N. (34)

The first two terms on the right-hand-side form the classical chemical potential
(see Bowen, [11]), although these terms do not produce a scalar. In [7, 9] it was
shown that incorporating the stress tensors yields an appropriate definition of
chemical potential when no electric field or charges exist. Note that changing
the effective stress or hydration stress in a porous medium results in a change
in the chemical potential, which in turn produces a different balance of species
within phases. The last term incorporates charge neutrality and suggests that
changing the location of charges changes the chemical potential as well.

Taking advantage of these relations and simplifying gives us the dissipative
portion of the entropy inequality in Appendix A.

4 Near-Equilibrium Constitutive Restrictions

Equilibrium is defined to occur when the following variables, defined generically
as xa, are zero:

dl, ε̇l, vl,s, ∇vlj ,l, vαj ,α, α = l, s j = 1, ..., N − 1 (35)

εlρlj êljs , ω
α, εlρlj Ẑ

lj

s , α = l, s j = 1, ..., N. (36)

Using a dimensionality argument we can show that these variables are function-
ally independent. Hence we have

∂

∂xa
(
∑
α=l,s

εαραT Λ̂α)D

∣∣∣∣∣∣
e

= 0,
∂2

∂(xaxb)
(
∑
α=l,s

εαραT Λ̂α)D

∣∣∣∣∣∣
e

≥ 0, (37)

where subscript e denotes equilibrium. Note that we have not incorporated
r̂αj and q̂αj into the above set. This is because without incorporating specific
chemical reactions, incorrect results are obtained.

So for example, considering xa = dl, we have at equilibrium

tlsym = −(pl − qleΛ)I. (38)

To obtain results which hold near equilibrium, we expand linearly about equi-
librium. For example(

tlsym + (pl − qleΛ)I +
N∑
j=1

ρljvlj ,lvlj ,l
)

neq

≈
(
tlsym + (pl − qleΛ)I

)
eq

+ f1 : dl + f2ε̇
l + ...

(39)
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where f1 is a fourth order tensor and f2 is a scalar. These linearization coeffi-
cients are functions of all independent variables which are not in the lists (35) or
(36). In this manner one can obtain cross effects, e.g. [18], and nonlinear terms,
e.g. [6]. With the exception of vl,s and vαj ,α, we choose to linearize only about
the one variable which produces a quadratic term in the entropy inequality, e.g.
for the liquid phase stress tensor:

tlsym ≈ −(pl − qleΛ)I + ν : dl −
N∑
j=1

ρljvlj ,lvlj ,l (40)

where ν is a fourth-order tensor. Note that similar to (28), it is the term pl−qleΛ
which represents normal force per unit area.

We remark here that in order to obtain equilibrium results the variables listed
in (35) and (36) must be functionally independent. However near equilibrium,
one can linearize about any independent variable which is zero at equilibrium.

We define the swelling pressure as

πα = −εαρα ∂Ã
l

∂εα

∣∣∣∣∣
ραj ,T,...

. (41)

which represents the change in energy of phase α with respect to the rela-
tive quantity of phase α in the system. If the liquid and solid phase are non-
interacting (non-swelling), then the energy of either phase would not change if
the volume fractions were changed (keeping the densities fixed) and this quan-
tity would be zero. A more detailed discussion of pα and πα is forthcoming in
another manuscript.

Using these definition and linearizing about ε̇l, we obtain

µlε̇l = pl + πl − (ps + πs) +
1
2
εoET · (El −Es), (42)

where µl is the linearization coefficient and is not to be confused with the chemi-
cal potential. Thus if there are no effects of the electric field and pl+πl > ps+πs

the volume fraction will change so as to increase the amount of the liquid phase.
The last term involves the differences in a portion of the electro-stress tensor
tE = DE − 1

2εoE · EI (see the conservation of linear momentum equation in
Part I). Thus if the contribution of the electric field of one phase is greater
than the other, then the equilibrium volume fraction will be affected, but the
electrical potential does not effect the equilibrium volume fraction.

Linearizing about ωα =∇vl − dl yields the traditional result

εαtαas = Qα : ωα, (43)

where Qα is a second-order tensor which may be a function of all independent
variables not necessarily zero at equilibrium, ωα is the anti-symmetric part of
the gradient of the velocity of phase α, and tαas is the anti-symmetric part of the
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stress tensor. This expression states that the stress tensors are in general not
symmetric, which was known from the conservation of angular momentum (see
Part I [5]). Cross effects can also be obtained [18].

Linearizing about the conservation of charge exchange term, Ẑ
lj

s , yields the
following near-equilibrium result

εlρljGlj Ẑ
lj

s =
ρs

ρsj
∂Ã

s

∂zsj
− ρl

ρlj
∂Ã

l

∂zlj
, (44)

where Glj is the linearization constant and where we assumed there are no cross
effects. Thus a transfer of ions of one species between phases occurs only if there
is an imbalance in the part of the electric-potential involving ion disassociation.

Adsorption relations are obtained by linearizing about the rate at which mass
is transfered from the solid phase to the liquid phase, εlρlj êljs . At equilibrium
we obtain

µlj − µsj = (zsj − zlj )Λ +
(
zljρl

ρlj
∂Ã

l

∂zlj
− zsjρs

ρsj
∂Ã

s

∂zsj

)
, (45)

or

µ̃lj = µ̃sj (46)

which is why we defined the electro-chemical potential as we did. This is the
boundary condition between phases, and in a more general framework (see e.g.
[3, 4]) this would produce the boundary condition for an osmotic experiment in
which the mixture on one side contains ions.

To obtain a near-equilibrium result governing phase transition, we linearize
about êljβ . Neglecting quadratic terms of relative velocities yields

ρljKlj êljs = µ̃sj − µ̃lj + ρljzsjGlj Ẑ
lj

s (47)

where, by (44), the last term on the right-hand-side is zero at equilibrium. Thus
the larger the difference in the electro-chemical potentials, the faster the phase
transitions occur.

The relationship between the chemical potential and the partial stress tensor
of the liquid phase is obtained exactly as in the previous section for the solid
phase, except that the liquid phase result holds only at equilibrium:

µljI = Ã
lj
I − 1

ρlj
tlj + zljΛI. (48)

5 Bulk-Phase Flow and Diffusion

The equations which govern momentum balance in porous media are known
as generalized Darcy’s equations, after Darcy, who in 1856 empirically derived
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the rather simple relationship that flux is proportional to the gradient in fluid
pressure:

εlvl,s = −K∇pl + εlρlg, (49)

where K is the conductivity of the material. It is generally thought to be valid
for slow-moving viscous fluids through a homogeneous granular media. We
would like to determine the generalization of this law for the swelling charged
porous media considered here. To begin with, we obtain a near equilibrium
expression for T̂

l

s by linearizing the coefficient of vl,s about vl,s and the diffusive
velocities, vlj ,l in order to capture the effects of ion hydration (see e.g. (39)).
This expression may then be substituted into the conservation of momentum
equation. Neglecting inertial effects, the Brinkman correction term, ∇ ·∇vl, as
well as the term involving ∇ · ωl (see (43)), and using (38) to eliminate tl we
obtain:

K · vl,s = −εl∇pl + εlρl(gl + glI) + πl∇εl + εlqleET

+εlqle∇Λ− εlρl ∂Ã
l

∂Es : (∇Es)T − εlρl ∂Ã
l

∂ET
· (∇ET )T

−εlρl ∂Ã
l

∂(∇T )
· (∇2T )−

N∑
j=1

rlj · vlj ,l, (50)

where ∂Al

∂Es : (∇Es)T = ∂Al

∂Esij
Esij,k in indicial notation. The linearization co-

efficients K and rlj are second-order tensors which may be a function of all
independent variables not equal to zero at equilibrium, including εl. The first 2
terms on the right-hand side recover the standard Darcy’s equation (49), except
that pl is not the classical pressure of normal force per unit area, but a ther-
modynamic definition of pressure, see equation (38). The third term involving
gI , is due to fluctuations in the electric field, see its definition in Appendix A of
[5]. The terms not involving the electric field have been derived before [4] and
these results are discussed in detail in [8]. They indicate that flow can be driven
by a gradient in the volume fraction if the medium swells (πl 6= 0) and also by
gradients in shear strain, the latter of which may be appropriate for swelling
media with low water content. These terms account for the chemical/hydration
forces between the solid and liquid phase. The term involving (∇2T ) is likely
negligible - first order thermal effects are obtained by considering cross terms.
In addition to these terms, we have the Lorentz force (εlqleET ), the Kelvin
force (using equation (21)) εlP l ·∇ET , and a term enforcing charge neutrality,
εlqle∇Λ. The last term involving summation over species is a cross-term put in
specifically to capture the hydrating effect of ions. Each charged particle sur-
rounds itself with water molecules, thereby impeding or enhancing bulk phase
flow when the diffusive velocity of the charged species are non-negligible. This
term is negligible for non-hydrating species.

Alternatively we can re-write Darcy’s law in terms of the bulk phase chemical
potential, as this is the formulation often used in applications [20, 23]. Define
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the bulk phase potential as the Gibb’s potential:

Gl =
N∑
j=1

Cljµlj = Ã
l
+

N∑
j=1

ρlj
∂Ã

l

∂ρlj
= Ã

l
+
pl

ρl
. (51)

Further we wish to re-write the electrical forcing terms in terms of the Maxwell
stress tensor:

tlM = DlET −
1
2
εoE

l ·ET I, (52)

Assuming that the electric fields are defined such that the exchange term in
Gauss law is zero (∇ · (εlDl)− εlqle = 0) we have

εlqleET + εlP l ·∇ET =∇ · (εlDlET −
1
2
εoE

l ·ET I)

+
1
2
εoE

l ·ET∇εl −
1
2
εoε

l(El ·∇ET −∇El ·ET ). (53)

Further, assuming εlρlglI − 1
2εoε

l(El ·∇ET −∇El ·ET =
∑N
j=1

1
2εoε

l[<∇Ej ·
E >l − <∇E ·Ej >l] (see Part I, Appendices B and C), is negligible, we have

K · vl,s = −εlρl∇Gl +
N∑
j=1

εl(ρl)2 ∂Ã
l

∂ρlj
∇Clj + εlqle∇Λ +

N∑
j=1

εlρl
∂Ã

l

∂zlj
∇zlj

−εl∇ET · P l + εlρlgl +∇ · (εltlM ) + εlρl
∂Ã

l

∂T
∇T +

1
2
εoET ·El∇εl

−
N∑
j=1

rlj · vlj ,l, (54)

which is comparable to what is derived in [20, 23]. The first term is denoted as
the mechanochemical force since it does not incorporate the electrical potential,
the second term is due to osmotic effects, the third and fourth terms due to
the electrical potential. The next two terms on the second line accounts for
the Kelvin force and gravity, respectively, and the following term states that
the Maxwell stress tensor effects flow. Thermal effects appear explicitly in this

form, and since ∂Ã
∂T < 0 (see (20)), we see that flow goes from hot to cold

regions. The last term on the second line magnifies the effects due to gradients
in volume fractions if electric fields are non-negligible. The last term is due to
hydration and was discussed above.

Diffusion in a single-phase mixture is governed by Fick’s law, which states
diffusive velocity is proportional to the gradient of the chemical potential. Here
we derive a novel form of Fick’s law. Begin with the coefficient of vlj ,l in the
residual entropy inequality which, when set to zero, gives at equilibrium:

εαραj (̂i
αj

+ T̂
αj

β )− εαραj (̂i
αN

+ T̂
αN

β ) = −∇
[
εαραj (Ã

αj − Ã
αN

)
]
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−εα∇ET · (P αj − ραj

ραN
P αN ) +

1
2
εoET · (Eαj − ραj

ραN
EαN )∇εα

+ρα
(
∂Ã

α

∂ραj
− ∂Ã

α

∂ραN

)
∇(εαραj ) + εαρα

(
∂Ã

α

∂zαj
∇zαj − ραj

ραN
∂Ã

α

∂zαN
∇zαN

)

−Λ∇
(
εαραj (zαj − zαN )

)
− εα(qαje −

ραj

ραN
qαNe )ET

−εα∇
(
ραj

ραN

)
· tαN

]
j = 1, ..., N − 1.

(55)

Summing (55) over j from 1 to N and making use of the equilibrium rela-
tionship

N∑
j=1

εlρlj T̂
lj

s = εlρlT̂
l

s = −εlρl∇Ã
l
+

N∑
j=1

ρl
∂Ã

l

∂ρlj
∇(εlρlj ) +

N∑
j=1

εlρl
∂Ã

l

∂zlj
∇zlj

+εlρl
∂Ã

l

∂T
∇T − εl∇ET · P l +

1
2
εoET ·El∇εl

−Λ∇(εlqle) (56)

we obtain (57) for the case j = N . Substituting this result back into (55) and
again making use of (29) and (48) we obtain the equilibrium result:

εlρlj (̂i
lj

+ T̂
lj

s ) = −εlρlj∇µlj −∇ · (εltlj ) + εlqlje ∇Λ

+εlρlj
∂Ã

l

∂T
∇T − εl∇ET · P lj + εlρlj (zl − zlj )ET +

1
2
εoET ·Elj∇εl

(57)

Next we linearize the coefficient of vlj ,l about equilibrium by expanding the
coefficient in the original entropy inequality given in Appendix B in terms of
both vlj ,l and vl,s so that Onsager’s principal is still satisfied. This allows us
to obtain non-relative results since j = 1, ..., N . Here we make use of the fact
that Ã

l
and the primary independent variables, listed in (8), are the same at

equilibrium and near-equilibrium. That this holds for Ã
l

is justified by Ã
l

not
being a function of any of the variables which define equilibrium. Using this
result to eliminate εlρlj (̂i

lj
+ T̂

lj

s ) in the conservation of momentum equation,
neglecting the inertial term, and approximating µlj using equation (48), we
obtain

Rljvlj ,l = −εlρlj∇µlj + εlρlj (glj − gljI ) + εlρl
∂Ã

l

∂zlj
∇zlj + εlqlje ∇Λ

−εlρljzlET + εlρlj
∂Ã

l

∂T
∇T − klj · vl,s

(58)
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where Rlj and klj are linearization constants and must be such that K, rlj ,
Rlj and klj satisfy the Onsager relationship. Note that this is similar in form to
the bulk flow equation (54). The Lorentz term, εlρljzlET , is actually a relative
Lorentz term, and the form is a consequence of the bulk phase velocity, vl, being
a mass-averaged velocity.

To analyze this further, assume that body force, glj is gravity, g, tempera-
ture gradients are negligible, the body force due to electric field fluctuations is
negligible gljI = 0, and we enforce charge neutrality with the Lagrange multipli-
er, Λ, and that the charge number on species j is constant (∇zlj = 0). In this
case (58) simplifies to

Rljvlj ,l = −εlρlj∇µlj + εlqlje ∇Λ + εlρljg

−εlCljqleET − klj · vl,s (59)

The first two terms (on the right-hand-side) state that the driving forces are the
chemical potential and the streaming potential. The Lorentz term involves the
bulk-phase force weighted by the mass fraction, just as the gravitational force
is weighted by the mass density. This term is new and should be evaluated
carefully, although similar bulk terms have been derived before, [2]. The last
term in (59) is the result of linearizing the dissipative terms about both vl,s and
vlj ,l and accounts for hydrating effects.

6 Discussion

We exploited the entropy inequality to obtain restrictions on the form of con-
stitutive relations for swelling porous media composed of a possibly polarizable
solid and liquid phase, with charges and an electric field. This has applications
in swelling clay soils, biopolymers, biological membranes, pulsed electrophoresis,
chromotography, drug delivery, and other swelling systems. We did so under
the philosophy that it is the total electric field which contributes to the force
and work terms in the conservation of momentum and energy, and that it is
only the total electric field which is measurable. This produced an additional
forcing term involving the gradient of the volume fraction, and an additional
body force which is a result of fluctuations in the electric field, appearing in
the macroscale conservation of momentum equation. The new body force term
appears wherever gravity appears, and the extra term involving the gradient of
the volume fraction, 1

2εoET ·El∇εl, affects only the bulk phase flow when this
equation is written in terms of the Maxwell stress tensor of the liquid phase,
see (54). These terms are a consequence of assuming that the primitive form of
the momentum and energy equation is the form written in terms of the Lorentz
force and Kelvin force, instead of the Maxwell stress tensor (see Part I).

The Lagrange multiplier which enforces charge neutrality is shown to corre-
spond with the electrical potential and is seen to affect the macroscopic pressure
(see e.g. (28) and (40)), so that classical pressure is not the thermodynamically
defined pressure, pα, but is pα − qαe Λ. Thus care must be taken in interpreting
the pressure term given in the generalized Darcy law, (50).



Swelling Porous Media with Electroquasistatics 17

It was assumed that ion-disassociation can occur, and this is represented by
terms which contain the partial of the Helmholtz free energy density with respect
to the charge per unit mass. This term can also be related to the charge per
molecule, see the discussion following (30). This term does not affect pressure,
but does manifest itself in bulk phase flow and diffusion.

The boundary condition between phases is a natural by-product of this for-
mulation, and it is shown that the electric field does not influence the boundary
condition, but that it is the balance of the electro-chemical potential which
determines equilibrium, see (46). Polarization enters into it only through the
definition of Ã

α
, see (6).

It was also shown that the rate at which the medium swells is determined by
the difference in the thermodynamic and swelling pressures, (pl+πl)− (ps+πs)
and the difference of a portion of the electro-stress tensor, see equation (42).
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Appendix A. Dissipative Entropy Inequality

The dissipative portion of the entropy inequality is

(∑
α

εαραT Λ̂α
)
D

=

dl :
[
εltlsym +

N∑
j=1

εlρljvlj ,lvlj ,l + εlpl − εlqleΛ
]

+ε̇l
[
− εlρl ∂Ã

l

∂εl
− εsρs ∂Ã

s

∂εl
+ pl − ps +

1
2
εoET · (El −Es)

]
+vl,s ·

[
− εlρl∇Ã

l
+

N∑
j=1

ρl
∂Ã

l

∂ρlj
∇(εlρlj ) +

N∑
j=1

εlρl
∂Ã

l

∂zlj
∇zlj

+εlρl
∂Ã

l

∂T
∇T − εl∇ET · P l +

1
2
εoET ·El∇εl − Λ∇(εlqle)− εlρlT̂

l

s

]
+
N−1∑
j=1

∇vlj ,l : εl
[
tlj − ρlj

ρlN
tlN + ρlρlj

( ∂Ãl
∂ρlj

− ∂Ã
l

∂ρlN

)
− ρlj (Ã

lj − Ã
lN

)I

−(qlje −
ρlj

ρlN
qlNe )ΛI

]
+
∑
α=l,s

N−1∑
j=1

vαj ,α ·
[
− εαραj (̂i

αj
+ T̂

αj

β ) + εαραj (̂i
αN

+ T̂
αN

β )

−∇
(
εαραj (Aαj −AαN )

)
− εα∇ET · (P αj − ραj

ραN
P αN )

+
1
2
εoET · (Eαj − ραj

ραN
EαN )∇εα + ρα

(
∂Ã

α

∂ραj
− ∂Ã

α

∂ραN

)
∇(εαραj )

+εαρα
(
∂Ã

α

∂zαj
∇zαj − ραj

ραN
∂Ã

α

∂zαN
∇zαN

)
− Λ

(
∇(εαραjzαj )−∇(εαραjzαN )

)
−εα(qαje −

ραj

ραN
qαNe )ET − εα∇

(
ραj

ραN

)
· tαN

]
+
∑
α=l,s

εα

T
∇T ·

[
qα +

N∑
j=1

(
ραjvαj ,α(Ã

αj
+

1
2

(vαj ,α)2)− tαj · vαj ,α
)

−ραT

(
ηα +

∂Ã
α

∂T

)
vα,s

]

+
∑
α=l,s

N∑
j=1

εlρlj êljs
[
− Ã

l
+ Ã

s
− ρl ∂Ã

l

∂ρlj
+ ρs

∂Ã
s

∂ρsj
+

ρs

ρsj
∂Ã

s

∂zsj
(zlj − zsj )
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+(zlj − zsj )Λ +
1
2
vsj ,s · vsj ,s − 1

2
vlj ,l · vlj ,l − 1

2
vl,s · vl,s

]
+
∑
α=l,s

N∑
j=1

εαραj r̂αj
[
− ρα ∂Ã

α

∂ραj
+ zαjΛ− 1

2
(vαj ,α)2

]
+
∑
α=l,s

ωα :
[
εαtαas

]
+
∑
α=l,s

N∑
j=1

∇ · (εαJ αj )
[
ρα
∂Ã

α

∂q
αj
e
− Λ

]
+
∑
α=l,s

εαJ α ·ET −
∑
α=l,s

N∑
j=1

εαq̂αj
[
ρα
∂Ã

α

∂q
αj
e
− Λ

]

+
N∑
j=1

εlρlj Ẑ
lj

s

[
ρs

ρsj
∂Ã

s

∂zsj
− ρl

ρlj
∂Ã

l

∂zlj

]
≥ 0, (60)

where subscripted sym and as mean the symmetric and anti-symmetric part of
the tensor, respectively.
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Appendix B. Entropy Inequality
The entropy inequality in its entirety is:

∑
α=l,s

εαραT Λ̂α =

∑
α=l,s

N∑
j=1

εα
Dsραj

Dt

[
−ρα ∂Ã

α

∂ραj
+ λαjρ + Ã

αj
+

1
ραj

ET · P αj + zαjΛ

]

+ĖT

[
−εlρl ∂Ã

l

∂ET
− εsρs ∂Ã

s

∂ET
− εlP l − εsP s

]

+Ṫ
[
− εlρlηl − εlρl ∂Ã

l

∂T
− εsρsηs − εsρs ∂Ã

s

∂T

]
+dl :

[
εltlsym + εlP l ·ET I +

N∑
j=1

εlρlj (λljρ I + Ã
lj
I + vlj ,lvlj ,l)

]

+ds :
[
εstssym + εsP s ·ET I +

N∑
j=1

εsρsj (λsjρ I + Ã
sj
I + vsj ,svsj ,s)

−εlρl∇F s · ∂Ã
l

∂Es · (∇F
s)T − εsρs∇F s · ∂Ã

s

∂Es · (∇F
s)T
]

+
∑
α=l,s

ωα :
[
εαtαas

]
+
∑
α=l,s

N−1∑
j=1

Dsvαj ,α

Dt
·
[
− εαρα ∂Ã

α

∂vαj ,α

]

+∇Ṫ ·
[
− εlρl ∂Ã

l

∂∇T − ε
sρs

∂Ã
s

∂∇T

]
+
∑
α=l,s

N∑
j=1

∇D
sραj

Dt
·
[
− εαρα ∂Ã

α

∂(∇ραj )

]

+ε̇l
[ N∑
j=1

(ρljλljρ − ρsjλsjρ ) + ρlAl − ρsAs +
1
2
εoET · (El −Es)

+ET · (P l − P s) + Λ(qle − qse)− εlρl
∂Ã

l

∂εl
− εsρs ∂Ã

s

∂εl

]
+v̇l,s ·

[
− εlρl ∂Ã

l

∂vl,s

]
+ ḋ

l
:
[
− εlρl ∂Ã

l

∂dl

]
+ ẇl :

[
− εlρl ∂Ã

l

∂wl

]
+∇v̇lj ,l :

[
− εlρl ∂Ã

l

∂(∇vlj ,l)

]
+vl,s ·

[
− εlρl ∂Ã

l

∂εl
∇εl −

N∑
j=1

εlρl
∂Ã

l

∂ρlj
∇ρlj − εlρl ∂Ã

l

∂Es
: (∇Es)T − εlρl ∂Ã

l

∂ET
· (∇ET )T
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−
N∑
j=1

εlρl
∂Ã

l

∂zlj
∇zlj − εl∇ET · P l − εlρlT̂

l

s +
1
2
εoET ·El∇εl

+
N∑
j=1

(Ã
lj

+
1
ρlj
ET · P lj )∇(εlρlj ) +

N∑
j=1

λljρ∇(εlρlj ) +
N∑
j=1

εlρljλljqe∇z
lj

−εlρl ∂Ã
l

∂vl,s
· (∇vl,s)T −

N−1∑
j=1

εlρl
∂Ã

l

∂vlj ,l
· (∇vlj ,l)T − εlρl ∂Ã

l

∂∇T ·∇
2T

−εlρl ∂Ã
l

∂∇vlj ,l :∇2vlj ,l −
N∑
j=1

εlρl
∂Ã

l

∂(∇ρlj ) ·∇
2ρlj

−εlρl ∂Ã
l

∂dl
: (∇dl)T − εlρl ∂Ã

l

∂wl
: (∇wl)T

]
+
∑
α=l,s

N∑
j=1

(∇vαj ,α)T :
[
εαtαj + εαP αj ·ET I + εαραjλαjρ I

]

+
∑
α=l,s

εα

T
∇T ·

[
qα +

N∑
j=1

(
ραjvαj ,α(Ã

αj
+

1
2

(vαj ,α)2)− tαj · vαj ,α
)

−Tρα
(
ηα +

∂Ã
α

∂T

)
vα,s

]

+
∑
α=l,s

N∑
j=1

vαj ,α ·
[
− εαραj î

αj −
∑
β 6=α

εαραj T̂
αj

β − εαραj∇Ã
αj

+
1
ραj

ET · P αj∇(εαραj )− εα∇ET · P αj +
1
2
εoET ·Eαj∇εα

+λαjρ ∇(εαραj ) + εαραjλαjqe∇z
αj − εαqαje ET

]
+
∑
α=l,s

εαJ α ·ET

+
∑
α=l,s

N∑
j=1

∑
β 6=α

εαραj ê
αj
β

[
− Ã

αj − 1
ραj

ET · P αj − 1
2

(vαj ,α)2 − λαjρ

−Ã
α
− 1

2
(vα,s)2

]
+
∑
α=l,s

N∑
j=1

εαραj r̂αj
[
− Ã

αj − 1
ραj

ET · P αj − λαjρ −
1
2

(vαj ,α)2

]

+
∑
α=l,s

∇ ·Dαj

[
εαλ

αj
D

]
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+
∑
α=l,s

N∑
j=1

Dszαj

Dt

[
− εαρα ∂Ã

α

∂zαj
+ εαραjλαjqe + εαραjΛ

]

+
∑
α=l,s

N∑
j=1

∇×Eαj ·
[
Λαj
E ε

α

]

+
∑
α=l,s

N∑
j=1

λ
αj
D

[
Dαj ·∇εα − εαqαje − εαd̂

αj −
∑
β 6=α

εαd̂
αj

β

]

+
∑
α=l,s

N∑
j=1

Λαj
E ·

[
∇εα ×Eαj − εασ̂αj −

∑
β 6=α

εασ̂
αj
β

]

+
∑
α=l,s

N∑
j=1

λαjqe

[
∇ · (εαJ αj )− εαq̂αj −

∑
β 6=α

εαραj Ẑ
αj
β

]
≥ 0,

where subscripted sym and as mean the symmetric and anti-symmetric part of
the tensor, respectively.


